Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
1.
Bioresour Technol ; 399: 130628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521173

RESUMO

The polyextremophilic Galdieria sulphuraria is emerging as a promising microalgal species for food applications. This work explores the potential of heterotrophically cultivated G. sulphuraria as a protein producer for human consumption. To this end, the performances of four G. sulphuraria strains grown under the same conditions were compared. Amino acid profiles varied among strains and growth phases, but all samples met FAO dietary requirements for adults. The specific growth rates were between 1.01 and 1.48 day-1. After glucose depletion, all strains showed an increase of 38-49 % in nitrogen content within 48 h, reaching 7.8-12.0 % w/w. An opposite trend was observed in protein bioaccessibility, which decreased on average from 69 % during the exponential phase to a minimum of 32 % 48 h after stationary phase, with significant differences among the strains. Therefore, selecting the appropriate strain and harvesting time is crucial for successful single-cell protein production.


Assuntos
Microalgas , Rodófitas , Humanos , Aminoácidos/metabolismo , Processos Heterotróficos , Ficocianina/metabolismo , Alimentos , Rodófitas/metabolismo , Microalgas/metabolismo , Biomassa
2.
Microbiome ; 12(1): 47, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454513

RESUMO

BACKGROUND: Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS: To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION: The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.


Assuntos
Anti-Infecciosos , Microbiota , Rodófitas , Alga Marinha , Rodófitas/genética , Rodófitas/metabolismo , Microbiota/genética , Bactérias/genética , Bactérias/metabolismo , Alga Marinha/genética , Alga Marinha/metabolismo , Metagenoma , Halogênios/metabolismo
3.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169280

RESUMO

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Assuntos
Flavobacteriaceae , Rodófitas , Xilanos/metabolismo , Ecossistema , Flavobacteriaceae/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/metabolismo , Plantas/metabolismo , Rodófitas/metabolismo , Carbono/metabolismo
4.
Environ Res ; 239(Pt 1): 117281, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827370

RESUMO

Lanthanides are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and eco-friendly recycling methods. In the present study, freeze-dried biomass of the polyextremophile Galdieria sulphuraria was employed to recover REEs from spent fluorescent lamps (FL) luminophores by pretreating the freeze-dried biomass with an acid solution to favour ion exchange and enhance the binding sites on the cell surface available for the metal ions. Lanthanides were extracted from the luminophores using sulfuric acid solutions according to standardised procedures, and the effect of biosorbent dosage (0.5-5 mg/ml) and biosorption time (5-60 min) were evaluated. The content of individual REEs in the luminophores and the resulting algal biomass were determined using inductively coupled plasma mass spectrometry (ICP-MS). The most abundant REE in the luminophores was yttrium (287.42 mg/g dm, 91.60% of all REEs), followed by europium (20.98 mg/g, 6.69%); cerium, gadolinium, terbium and lanthanum was in trace. The best biosorption performances were achieved after 5 min and at the lowest biosorbent dosage (0.5 mg/mL). The highest total metal amount corresponded to 41.61 mg/g dried mass, and yttrium was the most adsorbed metal (34.59 mg/g dm, 82.88%), followed by cerium (4.01 mg/g); all other metals were less than 2 mg/g. The rapidity of the biosorption process and the low biosorbent dosage required confirmed this microalga as a promising material for creating an eco-sustainable protocol for recycling REEs.


Assuntos
Cério , Metais Terras Raras , Rodófitas , Metais Terras Raras/análise , Ítrio , Metais/metabolismo , Rodófitas/metabolismo
5.
Mar Drugs ; 21(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504915

RESUMO

In the last decades, the interest in bioactive compounds derived from natural sources including bacteria, fungi, plants, and algae has significantly increased. It is well-known that aquatic or terrestrial organisms can produce, in special conditions, secondary metabolites with a wide range of biological properties, such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. In this study, we focused on the extremophilic microalga Galdieria sulphuraria as a possible producer of bioactive compounds with antiviral activity. The algal culture was subjected to organic extraction with acetone. The cytotoxicity effect of the extract was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antiviral activity was assessed through a plaque assay against herpesviruses and coronaviruses as enveloped viruses and poliovirus as a naked one. The monolayer was treated with different concentrations of extract, ranging from 1 µg/mL to 200 µg/mL, and infected with viruses. The algal extract displayed strong antiviral activity at non-toxic concentrations against all tested enveloped viruses, in particular in the virus pre-treatment against HSV-2 and HCoV-229E, with IC50 values of 1.7 µg/mL and IC90 of 1.8 µg/mL, respectively. However, no activity against the non-enveloped poliovirus has been detected. The inhibitory effect of the algal extract was confirmed by the quantitative RT-PCR of viral genes. Preliminary chemical profiling of the extract was performed using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), revealing the enrichment in primary fatty acid amides (PFAA), such as oleamide, palmitamide, and pheophorbide A. These promising results pave the way for the further purification of the mixture to explore its potential role as an antiviral agent.


Assuntos
Infecções por Coronavirus , Rodófitas , Vírus , Humanos , Antivirais/química , Rodófitas/metabolismo , Extratos Vegetais/farmacologia
6.
Mar Drugs ; 21(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37504924

RESUMO

R-phycoerythrin (R-PE) can be enzymatically extracted from red seaweeds such as Palmaria palmata. This pigment has numerous applications and is notably known as an antioxidant, antitumoral or anti-inflammatory agent. Enzymes secreted by P. palmata associated fungal strains were assumed to be efficient and adapted for R-PE extraction from this macroalga. The aim of the present study was to quantify both xylanolytic and cellulolytic activities of enzymatic extracts obtained from six Palmaria palmata derived fungal strains. Degradation of P. palmata biomass by fungal enzymatic extracts was also investigated, focused on soluble protein and R-PE extraction. Enzymatic extracts were obtained by solid state fermentation. Macroalgal degradation abilities were evaluated by measuring reducing sugar release using DNS assays. Soluble proteins and R-PE recovery yields were evaluated through bicinchoninic acid and spectrophotometric assays, respectively. Various enzymatic activities were obtained according to fungal isolates up to 978 U/mL for xylanase and 50 U/mL for cellulase. Enzymatic extract allowed high degrading abilities, with four of the six fungal strains assessed exhibiting at least equal results as the commercial enzymes for the reducing sugar release. Similarly, all six strains allowed the same soluble protein extraction yield and four of them led to an improvement of R-PE extraction. R-PE extraction from P. palamata using marine fungal enzymes appeared particularly promising. To the best of our knowledge, this study is the first on the use of enzymes of P. palmata associated fungi in the degradation of its own biomass for biomolecules recovery.


Assuntos
Rodófitas , Alga Marinha , Alga Marinha/metabolismo , Ficoeritrina/metabolismo , Rodófitas/metabolismo , Verduras , Extratos Vegetais/metabolismo , Açúcares/metabolismo
7.
Nat Plants ; 9(6): 978-986, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291398

RESUMO

Improving the carboxylation properties of Rubisco has primarily arisen from unforeseen amino acid substitutions remote from the catalytic site. The unpredictability has frustrated rational design efforts to enhance plant Rubisco towards the prized growth-enhancing carboxylation properties of red algae Griffithsia monilis GmRubisco. To address this, we determined the crystal structure of GmRubisco to 1.7 Å. Three structurally divergent domains were identified relative to the red-type bacterial Rhodobacter sphaeroides RsRubisco that, unlike GmRubisco, are expressed in Escherichia coli and plants. Kinetic comparison of 11 RsRubisco chimaeras revealed that incorporating C329A and A332V substitutions from GmRubisco Loop 6 (corresponding to plant residues 328 and 331) into RsRubisco increased the carboxylation rate (kcatc) by 60%, the carboxylation efficiency in air by 22% and the CO2/O2 specificity (Sc/o) by 7%. Plastome transformation of this RsRubisco Loop 6 mutant into tobacco enhanced photosynthesis and growth up to twofold over tobacco producing wild-type RsRubisco. Our findings demonstrate the utility of RsRubisco for the identification and in planta testing of amino acid grafts from algal Rubisco that can enhance the enzyme's carboxylase potential.


Assuntos
Rhodobacter sphaeroides , Rodófitas , Ribulose-Bifosfato Carboxilase/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Fotossíntese , Plantas/metabolismo , Rodófitas/genética , Rodófitas/metabolismo , Catálise
8.
Appl Microbiol Biotechnol ; 107(7-8): 2363-2384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36881117

RESUMO

Marine algae produce complex polysaccharides, which can be degraded by marine heterotrophic bacteria utilizing carbohydrate-active enzymes. The red algal polysaccharide porphyran contains the methoxy sugar 6-O-methyl-D-galactose (G6Me). In the degradation of porphyran, oxidative demethylation of this monosaccharide towards D-galactose and formaldehyde occurs, which is catalyzed by a cytochrome P450 monooxygenase and its redox partners. In direct proximity to the genes encoding for the key enzymes of this oxidative demethylation, genes encoding for zinc-dependent alcohol dehydrogenases (ADHs) were identified, which seem to be conserved in porphyran utilizing marine Flavobacteriia. Considering the fact that dehydrogenases could play an auxiliary role in carbohydrate degradation, we aimed to elucidate the physiological role of these marine ADHs. Although our results reveal that the ADHs are not involved in formaldehyde detoxification, a knockout of the ADH gene causes a dramatic growth defect of Zobellia galactanivorans with G6Me as a substrate. This indicates that the ADH is required for G6Me utilization. Complete biochemical characterizations of the ADHs from Formosa agariphila KMM 3901T (FoADH) and Z. galactanivorans DsijT (ZoADH) were performed, and the substrate screening revealed that these enzymes preferentially convert aromatic aldehydes. Additionally, we elucidated the crystal structures of FoADH and ZoADH in complex with NAD+ and showed that the strict substrate specificity of these new auxiliary enzymes is based on a narrow active site. KEY POINTS: • Knockout of the ADH-encoding gene revealed its role in 6-O-methyl-D-galactose utilization, suggesting a new auxiliary activity in marine carbohydrate degradation. • Complete enzyme characterization indicated no function in a subsequent reaction of the oxidative demethylation, such as formaldehyde detoxification. • These marine ADHs preferentially convert aromatic compounds, and their strict substrate specificity is based on a narrow active site.


Assuntos
Galactose , Rodófitas , Polissacarídeos/metabolismo , Carboidratos , Rodófitas/metabolismo , Oxirredutases
9.
Photosynth Res ; 156(3): 315-323, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781711

RESUMO

Light-harvesting complexes (LHCs) have been diversified in oxygenic photosynthetic organisms, and play an essential role in capturing light energy which is transferred to two types of photosystem cores to promote charge-separation reactions. Red algae are one of the groups of photosynthetic eukaryotes, and their chlorophyll (Chl) a-binding LHCs are specifically associated with photosystem I (PSI). In this study, we purified three types of preparations, PSI-LHCI supercomplexes, PSI cores, and isolated LHCIs, from the red alga Cyanidium caldarium, and examined their properties. The polypeptide bands of PSI-LHCI showed characteristic PSI and LHCI components without contamination by other proteins. The carotenoid composition of LHCI displayed zeaxanthins, ß-cryptoxanthins, and ß-carotenes. Among the carotenoids, zeaxanthins were enriched in LHCI. On the contrary, both zeaxanthins and ß-cryptoxanthins could not be detected from PSI, suggesting that zeaxanthins and ß-cryptoxanthins are bound to LHCI but not PSI. A Qy peak of Chl a in the absorption spectrum of LHCI was shifted to a shorter wavelength than those in PSI and PSI-LHCI. This tendency is in line with the result of fluorescence-emission spectra, in which the emission maxima of PSI-LHCI, PSI, and LHCI appeared at 727, 719, and 677 nm, respectively. Time-resolved fluorescence spectra of LHCI represented no 719 and 727-nm fluorescence bands from picoseconds to nanoseconds. These results indicate that energy levels of Chls around/within LHCIs and within PSI are changed by binding LHCIs to PSI. Based on these findings, we discuss the expression, function, and structure of red algal PSI-LHCI supercomplexes.


Assuntos
Complexo de Proteína do Fotossistema I , Rodófitas , Complexo de Proteína do Fotossistema I/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Análise Espectral , Clorofila A , Rodófitas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo
10.
Mar Drugs ; 21(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36662222

RESUMO

In this study, we studied the bioactive peptides produced by thermolysin hydrolysis of a water-soluble protein (WSP) from the red alga Gracilariopsis chorda, whose major components are phycobiliproteins and Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo). The results showed that WSP hydrolysate exhibited significantly higher ACE inhibitory activity (92% inhibition) compared to DPP-IV inhibitory activity and DPPH scavenging activity. The phycobiliproteins and RuBisCo of G. chorda contain a high proportion of hydrophobic (31.0-46.5%) and aromatic (5.1-46.5%) amino acid residues, which was considered suitable for the formation of peptides with strong ACE inhibitory activity. Therefore, we searched for peptides with strong ACE inhibitory activity and identified two novel peptides (IDHY and LVVER). Then, their interaction with human ACE was evaluated by molecular docking, and IDHY was found to be a promising inhibitor. In silico analysis was then performed on the structural factors affecting ACE inhibitory peptide release, using the predicted 3D structures of phycobiliproteins and RuBisCo. The results showed that most of the ACE inhibitory peptides are located in the highly solvent accessible α-helix. Therefore, it was suggested that G. chorda is a good source of bioactive peptides, especially ACE-inhibitory peptides.


Assuntos
Rodófitas , Ribulose-Bifosfato Carboxilase , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Rodófitas/metabolismo , Ficobiliproteínas , Peptidil Dipeptidase A/química
11.
Mol Biotechnol ; 65(4): 590-597, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36098867

RESUMO

Epigenetic regulation by histone modification can activate or repress transcription through changes in chromatin dynamics and regulates development and the response to environmental signals in both animals and plants. Chromatin immunoprecipitation (ChIP) is an indispensable tool to identify histones with specific post-translational modifications. The lack of a ChIP technique for macroalgae has hindered understanding of the role of histone modification in the expression of genes in this organism. In this study, a ChIP method with several modifications, based on existing protocols for plant cells, has been developed for the red macroalga, Neopyropia yezoensis, that consists of a heterogeneous alternation of macroscopic leaf-like gametophytes and microscopic filamentous sporophytes. ChIP method coupled with qPCR enables the identification of a histone mark in generation-specific genes from N. yezoensis. The results indicate that acetylation of histone H3 at lysine 9 in the 5' flanking and coding regions from generation-specific genes was maintained at relatively high levels, even in generation-repressed gene expression. The use of this ChIP method will contribute significantly to identify the epigenetic regulatory mechanisms through histone modifications that control a variety of biological processes in red macroalgae.


Assuntos
Rodófitas , Alga Marinha , Animais , Histonas/genética , Histonas/metabolismo , Código das Histonas , Epigênese Genética , Processamento de Proteína Pós-Traducional , Imunoprecipitação da Cromatina/métodos , Rodófitas/genética , Rodófitas/metabolismo , Alga Marinha/genética , Alga Marinha/metabolismo
12.
Methods Mol Biol ; 2555: 125-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306083

RESUMO

Sustainable use of natural products is one of the key challenges for the future. An increasing focus is on marine organic matter, mostly algae. New biotechnological tools for processing high amounts of micro- and macroalgae are necessary for efficient industrial degradation of marine matter. Secreted glycosyl hydrolases can be enriched and tested on the specific algae cell wall polymers of all algae groups (Rhodophyta; Phaeophyceae; Chlorophyta/Charophyta). Metagenomic analyses established new possibilities to screen algae-associated microbiomes for novel degrading enzymes in combination with sequence-based function prediction.


Assuntos
Metagenoma , Rodófitas , Hidrolases/metabolismo , Rodófitas/metabolismo , Carboidratos , Parede Celular
13.
Int J Biol Macromol ; 228: 671-680, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577474

RESUMO

Red algal polysaccharide is a good potential medical resource. Different red algal polysaccharides have different structural characteristics and rich biological activities. Previous studies have identified some structural information of sulfated polysaccharide (GNP, 25.8 kDa) from red algae, Gelidium crinale and found that GNP has excellent anti-inflammatory, antioxidant and anti-tumor activities. On this basis, this study investigated the effect of GNP on atherosclerosis, which is closely related to antioxidant and anti-inflammatory mechanisms and usually coexists and interacts with hypertension. This study investigated the inhibitory activity of GNP on angiotensin-converting enzyme (ACE) and its mechanism on oxidized low-density lipoprotein (ox-LDL)-induced HUVEC atherosclerosis. The results showed that GNP inhibits the up-regulation of cell adhesion molecules and oxidized low-density lipoprotein receptor-1 (LOX-1). GNP can regulate mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB) and PI3K/AKT signal pathways, inhibit apoptosis, invasion and migration. Meanwhile, GNP (IC50 = 269.2 µg/mL) antagonizes ACE by competitive binding mode, and it can reduce systolic blood pressure (SBP) of spontaneously hypertensive rats (SHR). It provides a theoretical basis for GNP as a potential substance for the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Rodófitas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Hipertensivos/farmacologia , Antioxidantes , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Lipoproteínas LDL/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Rodófitas/metabolismo , Sulfatos , Humanos
14.
BMC Biol ; 20(1): 291, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575464

RESUMO

BACKGROUND: Despite a global prevalence of photosynthetic organisms in the ocean's mesophotic zone (30-200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae - here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale. RESULTS: Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll-a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer. CONCLUSIONS: Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone.


Assuntos
Ficoeritrina , Rodófitas , Ficobilissomas/metabolismo , Fotossíntese/fisiologia , Luz , Rodófitas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
15.
Photosynth Res ; 154(2): 125-141, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155877

RESUMO

Nonphotochemical quenching acts as a frontline response to prevent excitation energy from reaching the photochemical reaction center of photosystem II before photodamage occurs. Strong fluorescence quenching after merely one multi-turnover saturating light pulse characterizes a unique feature of nonphotochemical quenching in red algae. Several mechanisms underlying red algal nonphotochemical quenching have been proposed, yet which process(es) dominantly account for the strong fluorescence quenching is still under discussion. Here we assessed multiple nonphotochemical quenching processes in the extremophilic red alga Cyanidioschyzon merolae under light pulse and continuous illumination conditions. To assess the nonphotochemical quenching processes that might display different kinetics, fluorescence emission spectra at 77 K were measured after different periods of light treatments, and external fluorophores were added for normalization of the fluorescence level. The phycobilisome- and photosystem II-related nonphotochemical quenching processes were distinguished by light preferentially absorbed by phycobilisomes and photosystems, respectively. Multiple nonphotochemical quenching processes, including the energetic decoupling of phycobilisomes from photosystem II, the energy spillover from phycobilisomes to photosystem I and from photosystem II to photosystem I, were identified along with the previously identified intrinsic quenching within photosystem II. The ability to use multiple nonphotochemical quenching processes appears to maximize the light harvesting efficiency for photochemistry and to provide the flexibility of the energy redistribution between photosystem II and photosystem I. The effect of the various ionophores on the nonphotochemical quenching level suggests that nonphotochemical quenching is modulated by transmembrane gradients of protons and other cations.


Assuntos
Extremófilos , Rodófitas , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Extremófilos/metabolismo , Rodófitas/metabolismo
16.
Bioresour Technol ; 363: 127962, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115509

RESUMO

In this study, Clostridium sp. strain WK-AN1 carrying both genes of agarase (Aga0283) and neoagarobiose hydrolase (NH2780) were successfully constructed to convert agar polysaccharide directly into butanol, contributing to overcome the lack of algal hydrolases in solventogenic clostridia. Through the optimization by the Plackett-Burman design (PBD) and response surface methodology (RSM), a maximal butanol production of 6.42 g/L was achieved from 17.86 g/L agar. Further application of utilizing the butyric acid pretreated Gelidium amansii hydrolysate demonstrated the modified strain obtained the butanol production of 7.83 g/L by 1.63-fold improvement over the wild-type one. This work for the first time establishes a novel route to utilize red algal polysaccharides for butanol fermentation by constructing a solventogenic clostridia-specific secretory expression system for heterologous agarases, which will provide insights for future development of the sustainable third-generation biomass energy.


Assuntos
Butanóis , Rodófitas , 1-Butanol/metabolismo , Ágar/metabolismo , Butanóis/metabolismo , Ácido Butírico/metabolismo , Clostridium/metabolismo , Fermentação , Rodófitas/metabolismo
17.
Mar Biotechnol (NY) ; 24(5): 882-894, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36074309

RESUMO

ACE inhibitors generated from food proteins have recently become the most well-known subclass of bioactive peptides, and their bio-functionality can be a potential alternative to natural bioactive food components and synthetic drugs. The bioactivities of Acrochaetium sp., the red alga used in this investigation, have never been reported before. Screening of bioactive peptides from Acrochaetium sp. as ACE inhibitors were hydrolyzed with various proteolytic enzymes. Protein hydrolysates were fractionated separately using reversed phased (RP) and strong cation exchange (SCX) chromatography and identified as VGGSDLQAL (VL-9) using α-chymotrypsin. It comes from Phycoerythrin (PE), an abundant protein in a primarily red alga. The peptide VL-9 shows the ACE inhibitory activity with IC50 value 433.1 ± 1.08 µM. The inhibition pattern showed VL-9 as a non-competitive inhibitor. Molecular docking simulation proved that VL-9 was non-competitive inhibition due to the interaction peptide and ACE was not in the catalytic site. Moreover, VL-9 derived from Acrochaetium sp. is a natural bioactive peptide that is safer and available for food protein; also, the ACE inhibitory peptide derived from Acrochaetium sp. could be the one alternative resource to develop functional food for combating hypertension.


Assuntos
Rodófitas , Medicamentos Sintéticos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Angiotensinas , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ficoeritrina , Hidrolisados de Proteína/química , Rodófitas/metabolismo
18.
Int J Biol Macromol ; 222(Pt A): 818-829, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174866

RESUMO

Polysaccharide extracted from red seaweed Bangia fusco-purpurea (BFP) is a novel sulfated galactan, differed from agarans and carrageenans in fine structure. In this study, in vitro fermentation characteristics of BFP by human gut microbiota and its protective effect on lipopolysaccharide (LPS)-induced injury in Caco-2 cells were investigated. Our results showed that BFP was mainly degraded at transverse colon for 18 h fermentation by gut microbiota with reduced molecular weight. Meanwhile, BFP fermentation was associated with increased short-chain fatty acids (SCFAs) as compared to control group, especially acetic acid was increased to 129.53 ± 0.24 from 82.14 ± 0.23 mmol/L, and butyric acid was up to 1.56 ± 0.004 from 0.62 ± 0.01 mmol/L. Furthermore, BFP promoted abundances of Bacteroidetes and Firmicutes, while decreased numbers of Proteobacteria. The up-regrated beneficial differential metabolites were SCFAs, L-proline, arginine, folic acid, pyridoxamine, thiamine, etc. (p < 0.05), and their related metabolic pathways mainly included mTOR, arginine biosynthesis, and vitamin metabolism. Notably, BFP fermentation products at transverse colon significantly restored cell viability of LPS-treated Caco-2 cells from 73.79 ± 0.48 % to 93.79-99.64 %, which might be caused by increased beneficial differential metabolites (e.g., SCFAs). Our findings suggest that BFP has prebiotic potential and can enhance gut health.


Assuntos
Microbioma Gastrointestinal , Rodófitas , Humanos , Arginina/farmacologia , Células CACO-2 , Ácidos Graxos Voláteis/farmacologia , Fermentação , Lipopolissacarídeos/farmacologia , Polissacarídeos/química , Rodófitas/metabolismo
19.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078060

RESUMO

The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Rodófitas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Receptores de Superfície Celular/metabolismo , Rodófitas/metabolismo , Células-Tronco/metabolismo
20.
Mar Drugs ; 20(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135734

RESUMO

The objective of this research was to investigate the antioxidant activity of Gracilarialemaneiformis polysaccharide degradation and its underlying mechanism involved in the Nrf-2/Keap-1 signaling pathway in HepG2 cells with oxidative stress induced by H2O2. The result of the scavenging ability of free radicals showed that GLP-HV (polysaccharide degraded by H2O2-vitamin C (Vc)) performed a better scavenging ability than GLP (G.lemaneiformis polysaccharide). Moreover, the scavenging ability of polysaccharide to these free radicals from strong to weak was as follows: superoxide radical, ferric ion, ABTS+, and DPPH radical, and their IC50 values were 3.56 ± 0.0028, 4.97 ± 0.18, 9.62 ± 0.35, and 23.85 ± 1.78 mg/mL, respectively. Furthermore, GLP-HV obviously relieved oxidative stress in HepG2 cells, which strengthened the activity of T-AOC, CAT, GSH-PX, and SOD, and diminished the intensity of MDA, intracellular ROS, and calcium ion based on the Nrf-2/Keap-1 signaling pathway. The PCR result revealed that polysaccharide upregulated the expression of the genes Nrf-2, HO-1, NQO-1, and ZO-1 and downregulated Keap-1. The correlation between chemical properties and antioxidant mechanism of GLP-HV was evaluated via a heat map. The results illustrated that reducing sugar and active groups presented a positive correlation, and molecular weight and viscosity exhibited a negative relation with antioxidant activity.


Assuntos
Gracilaria , Rodófitas , Antioxidantes/química , Ácido Ascórbico , Cálcio/metabolismo , Gracilaria/química , Células Hep G2 , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Rodófitas/metabolismo , Transdução de Sinais , Açúcares , Superóxido Dismutase/metabolismo , Superóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...